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Abstract

This paper presents an alternative efficient procedure to analyze plane elasticity problems of a circularly cylindrical
layered media subject to an arbitrary point force. Based on the method of analytical continuation in conjunction with
the alternating technique, the elastic fields of the three-phase media are derived. A rapidly convergent series solution
which is expressed in terms of an explicit general term of the complex potential of the corresponding homogeneous
problem is obtained in an elegant form. As a numerical illustration, the interfacial stresses are presented for different
material combinations and for different positions of the point force.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

In view of the rapidly increasing use of composite materials in many engineering applications, consider-
able research activities in the area of stress analysis of layered medium have been of significant concern in
recent years. The interaction between singularities and multiple-phase materials becomes an important
topic in studying the damage mechanism of composite structures. Because of the inherent heterogeneous
nature of the composite, the analysis of such materials is much more involved than that of homogeneous
counterparts. For multi-layered composites, the problem becomes more complicated since solutions to the
elasticity problem for all layers are required. Consequently, the conventional procedure of stress analysis of
multi-layered media results in having to solve a system of simultaneous equations for a large number of
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unknown constants. The complexity of such a procedure can be found in the work of Iyengar and Alwar
(1964) as well as Chen (1971) who analyzed the semi-infinite medium composed of isotropic layers. As an
alternative efficient approach to the analysis of multi-layered media, various solution procedures have been
developed. Bufler (1971) used the transfer matrix approach to convert the boundary value problem to an
equivalent initial value problem based on the mixed formulation of elasticity proposed by Vlasov and
Leontev (1966). This transfer matrix is expressed in terms of the infinite series expansion allowing solutions
with various orders of approximation to be obtained. Based on the flexibility matrix method, Small and
Booker (1984) performed the stress analysis of a layered medium resting on a rigid foundation. This method
has been found to have an advantage of significant reducing the number of simultaneous equations. Lin
and Keer (1989) also used the flexibility matrix method together with the boundary integral formulation
to deal with a vertical crack in a layer medium. Based on the Fourier transform technique in conjunction
with the stiffness matrix approach, Choi and Thangjitham (1991) obtained the solutions of multi-layered
anisotropic elastic media. Choi and Earmme (2002a,b) employed the alternating technique to obtain the
solution of singularity problems in an isotropic and anisotropic plane layered trimaterial. However, for
the analogous problems of multi-layered media with circular interfaces, more mathematical difficulties
are encountered. Based on the Laurent series expansion, Luo (1991) found a solution for an edge disloca-
tion in a three-phase composite cylinder. Their results are valid only for the case that an edge dislocation (or
singularity) is situated at the intermediate annular region of composite structure.

In this paper we consider the problem of an isotropic three-phase circularly cylindrical media interacted
with an arbitrary point force. A point force (or singularity) considered in this paper is located either in the
matrix or in the inclusion. The proposed method is based on the technique of analytical continuation that is
alternatively applied across the two concentric circular interfaces in order to derive the trimaterial solution
in a series form from the corresponding homogeneous solution. The plane of the paper is as follows. The
general formulation for plane isotropic elasticity is provided in Section 2. The general form of the complex
potentials of the stress functions for a trimaterial is provided in Section 3. Some numerical results are
discussed in Section 4. Finally, Section 5 concludes the article.
2. Isotropic elasticity

For a two-dimensional theory of elasticity, the components of displacement and traction force can be
expressed in terms of two stress functions /(z) and w(z) as (Muskhelishvili, 1953)
2Gðuþ ivÞ ¼ j/ðzÞ � z/0ðzÞ � wðzÞ ð1Þ
� Y þ iX ¼ /ðzÞ þ z/0ðzÞ þ wðzÞ ð2Þ
where G is the shear modulus, j = 3 � 4m, for plane strain and (3 � m)/(1 + m), for plane stress with m being
the Poisson�s ratio. Here a superimposed bar represents the complex conjugate. The components stress in
polar coordinates are related to /(z) and w(z) by (Muskhelishvili, 1953)
rrr þ rhh ¼ 2½/0ðzÞ þ /0ðzÞ� ð3Þ

rrr þ irrh ¼ /0ðzÞ þ /0ðzÞ � �z/00ðzÞ þ �z
z
w0ðzÞ

h i
ð4Þ
For the problem associated with an isotropic elastic bimaterial, the stresses are found to depend on only
two non-dimensional Dundurs parameters (Dundurs, 1969)
aab ¼
Gaðjb þ 1Þ � Gbðja þ 1Þ
Gaðjb þ 1Þ þ Gbðja þ 1Þ ; bab ¼

Gaðjb � 1Þ � Gbðja � 1Þ
Gaðjb þ 1Þ þ Gbðja þ 1Þ ð5Þ
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where a and b refer to the two materials composing the bimaterial. Another pairs associated with the above
two parameters are defined as
Kab ¼
aab þ bab

1� bab
; Pab ¼

aab � bab

1þ bab
ð6Þ
which will be used in our subsequent derivations for trimaterial problems.
Consider a point force of magnitude F enclosing an angle c with the x1-axis embedded in a point

z0 ¼ r0eih0 of an infinite homogeneous medium, the solutions are (Muskhelishvili, 1953)
/0ðzÞ ¼ �
F eic

2pð1þ jÞ logðz� z0Þ ð7Þ

w0ðzÞ ¼
jF e�ic

2pð1þ jÞ logðz� z0Þ þ
F eic

2pð1þ jÞ
z0

z� z0

ð8Þ
These fields will be used for the corresponding problem of the same singularity in a trimaterial in the fol-
lowing sections.
3. A singularity in a trimaterial and the alternating technique

To analyze a singularity in a trimaterial with two concentric circular interfaces as shown in Fig. 1, the
alternating technique together with the method of analytical continuation is applied. Since it is difficult to
find a solution satisfying all the continuity conditions along two interfaces at the same time, the method of
analytical continuation should be applied to two interfaces alternatively.

For a region bounded by a circle, say c = jzj, Eqs. (1), (2) and (4), respectively can be rewritten as
2Gðuþ ivÞ ¼ j/ðzÞ � xðzÞ þ c2

�z
� z

� �
/0ðzÞ ð9Þ

� Y þ iX ¼ /ðzÞ þ xðzÞ þ z� c2

�z

� �
/0ðzÞ ð10Þ
X2

X1

b

Sc

L

L*
a

a

O

S

S

b

F

Z0

Fig. 1. A point force (or singularity) in a trimaterial.
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rrr þ irrh ¼ /0ðzÞ � �z
z
x0ðzÞ þ 1� c2

z�z

� �
/0ðzÞ þ c2

z
� �z

� �
/00ðzÞ ð11Þ
where
xðzÞ ¼ c2

z
/0ðzÞ þ wðzÞ ð12Þ
3.1. Case I: A point force embedded in Sc

Assume that regions Sa, Sb and Sc occupied with material a, b and c, respectively are perfectly bonded
along the interfaces r = a and r = b (see Fig. 1). The alternating technique is applied to solve the problem of
a trimaterial subjected a singularity in region Sc by considering the following steps.

First, we regard regions Sa and Sb composed of the same material b and region Sc of material c. /1(z) and
x1(z) holomorphic (except at z = 0) in Sa [ Sb, /c0(z) and xc0(z) holomorphic in Sc are introduced to satisfy
the continuity of traction and displacement across L that
/1ðqÞ þ x1ðqÞ ¼ /0ðqÞ þ x0ðqÞ þ /c0ðqÞ þ xc0ðqÞ ð13Þ
1

Gb
½jb/1ðqÞ � x1ðqÞ� ¼

1

Gc
½jc/c0ðqÞ þ jc/0ðqÞ � xc0ðqÞ � x0ðqÞ� ð14Þ
where q = beih and
x0ðzÞ ¼
F eic

2pð1þ jcÞ
z0 �

b2

z

� �
1

ðz� z0Þ
þ jcF e�ic

2pð1þ jcÞ
logðz� z0Þ ð15Þ
By the standard analytical continuation arguments it follows that
x1

b2

z

� �
� /c0ðzÞ � x0

b2

z

� �
� C1zþ C0z ¼ 0; z 2 Sc ð16Þ

/0ðzÞ þ xc0

b2

z

� �
� /1ðzÞ � C1zþ C0z ¼ 0; z 2 Sa [ Sb ð17Þ

�
x1

b2

z

� �
Gb

� jc

Gc
/c0ðzÞ þ

x0
b2

z

� �
Gc

þ C1z
Gb
� C0z

Gc
¼ 0; z 2 Sc ð18Þ

jc

Gc
/0ðzÞ �

xc0
b2

z

� �
Gc

� jb

Gb
/1ðzÞ þ

C1z
Gb
� C0z

Gc
¼ 0; z 2 Sa [ Sb ð19Þ
Solve Eqs. (16)–(19) to obtain
/1ðzÞ ¼ ð1þ KbcÞ/0ðzÞ þPcbC1z; z 2 Sa [ Sb ð20Þ

x1ðzÞ ¼ ð1þPbcÞx0ðzÞ � ð1þPbcÞC0
b2

z
þ C1

b2

z
; z 2 Sa [ Sb ð21Þ

/c0ðzÞ ¼ Pbcx0

b2

z

� �
�PbcC0z; z 2 Sc ð22Þ

xc0ðzÞ ¼ Kbc/0

b2

z

� �
þ ð1þPcbÞC1

b2

z
� C0

b2

z
; z 2 Sc ð23Þ
where C0 ¼ /00ð0Þ and C1 ¼ /01ð0Þ.
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Since this result is based on the assumption that region Sa is made up of material b, it cannot satisfy the
continuity condition across L*, which lies between material a and b.

In the second step, we assume region Sb and Sc be made up of the same material b and region Sa of mate-
rial a. Additional terms /b1(z) and xb1(z) holomorphic in Sb [ Sc, /a1(z) and xa1(z) holomorphic (except at
z = 0) in Sa are introduced to satisfy the continuity conditions across L* that
/a1ðrÞ þ xa1ðrÞ ¼ /1ðrÞ þ /b1ðrÞ þ xa
1ðrÞ þ xb1ðrÞ ð24Þ

ja/a1ðrÞ � xa1ðrÞ
Ga

¼ jb½/b1ðrÞ þ /1ðrÞ� � ½xb1ðrÞ þ xa
1ðrÞ�

Gb
ð25Þ
where xa
1ðzÞ ¼ x1ðzÞ þ ða

2�b2Þ
z /01ðzÞ and r = aeih.

Based on the method of analytical continuation, we have
/a1ðzÞ � /1ðzÞ � xb1

a2

z

� �
� C1zþ Ca1z ¼ 0; z 2 Sa ð26Þ

/b1ðzÞ þ xa
1

a2

z

� �
� xa1

a2

z

� �
� C1zþ Ca1z ¼ 0; z 2 Sb [ Sc ð27Þ

ja/a1ðzÞ
Ga

�
jb/1ðzÞ � xb1

a2

z

� �
Gb

� Ca1z
Ga
þ C1z

Gb
¼ 0; z 2 Sa ð28Þ

jb/b1ðzÞ � xa
1

a2

z

� �
Gb

þ
xa1

a2

z

� �
Ga

� Ca1z
Ga
þ C1z

Gb
¼ 0; z 2 Sb [ Sc ð29Þ
Solve Eqs. (26)–(29) to obtain
/a1ðzÞ ¼ ð1þ KabÞ/1ðzÞ þPbaCa1z; z 2 Sa ð30Þ

xa1ðzÞ ¼ ð1þPabÞxa
1ðzÞ � ð1þPabÞC1

a2

z
þ Ca1

a2

z
; z 2 Sa ð31Þ

/b1ðzÞ ¼ Pabxa
1

a2

z

� �
�PabC1z; z 2 Sb [ Sc ð32Þ

xb1ðzÞ ¼ Kab/1

a2

z

� �
þ ð1þPbaÞCa1

a2

z
� C1

a2

z
; z 2 Sb [ Sc ð33Þ
where Ca1 ¼ /0a1ð0Þ.
Since this result is based on the assumption that region Sc is made up of material b, it cannot satisfy the

continuity conditions across L.
In the third step, we again regard regions Sa and Sb composed of the same material b and region Sc of

material c. Additional terms /2(z), x2(z) holomorphic (except at z = 0) in Sa [ Sb and /c1(z), xc1(z) holo-
morphic in Sc are introduced to satisfy the continuity conditions across L as
/b1ðqÞ þ /2ðqÞ þ xb
b1ðqÞ þ x2ðqÞ ¼ /c1ðqÞ þ xc1ðqÞ ð34Þ

1

Gb
fjb½/b1ðqÞ þ /2ðqÞ� � ½xb

b1ðqÞ þ x2ðqÞ�g ¼
1

Gc
½jc/c1ðqÞ � xc1ðqÞ� ð35Þ
where xb
b1ðzÞ ¼ xb1ðzÞ þ ðb

2�a2Þ
z /0b1ðzÞ.

By applying the method of analytical continuation, we have
/b1ðzÞ þ x2

b2

z

� �
� /c1ðzÞ � C2z ¼ 0; z 2 Sc ð36Þ
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xc1
b2

z

� �
� /2ðzÞ � xb

b1

b2

z

� �
� C2z ¼ 0; Sa [ Sb ð37Þ

1

Gb
jb/b1ðzÞ � x2

b2

z

� �� �
� jc

Gc
/c1ðzÞ þ

C2z
Gb
¼ 0; z 2 Sc ð38Þ

� 1

Gc
xc1

b2

z

� �
� 1

Gb
jb/2ðzÞ � xb

b1

b2

z

� �� �
þ C2z

Gb
¼ 0; Sa [ Sb ð39Þ
Solve Eqs. (36)–(39) to obtain
/2ðzÞ ¼ Pcbxb
b1

b2

z

� �
þPcbC2z; z 2 Sa [ Sb ð40Þ

x2ðzÞ ¼ Kcb/b1

b2

z

� �
þ C2

b2

z
; z 2 Sa [ Sb ð41Þ

/c1ðzÞ ¼ ð1þ KcbÞ/b1ðzÞ; z 2 Sc ð42Þ

xc1ðzÞ ¼ ð1þPcbÞxb
b1ðzÞ þ ð1þPcbÞC2

b2

z
; z 2 Sc ð43Þ
where C2 ¼ /02ð0Þ.
In the fourth step, regions Sb and Sc are assumed to make up with material b again. Repetitions of sec-

ond and third step, the analytical continuation method is alternatively applied to two interfaces to obtain
the additional terms /an(z), /bn(z), /cn(z), /n+1(z) and xan(z), xbn(z), xcn(z), xn+1(z) (n = 2,3,4,. . .). The
stress functions can be finally obtained as
/ðzÞ ¼

P1
n¼1

/anðzÞ; z 2 Sa

P1
n¼1

½/nðzÞ þ /bnðzÞ�; z 2 Sb

/0ðzÞ þ /c0ðzÞ þ
P1
n¼1

/cnðzÞ; z 2 Sc

8>>>>>>>><
>>>>>>>>:

ð44aÞ

xðzÞ ¼

P1
n¼1

xanðzÞ; z 2 Sa

P1
n¼1

½xnðzÞ þ xbnðzÞ�; z 2 Sb

x0ðzÞ þ xc0ðzÞ þ
P1
n¼1

xcnðzÞ; z 2 Sc

8>>>>>>>><
>>>>>>>>:

ð44bÞ
If one expresses the stress functions /(z) and x(z) in terms of /0(z) and x0(z) respectively, Eq. (44)
becomes
/ðzÞ ¼

ð1þ KabÞ
P1
n¼1

/nðzÞ þ Pbað1þKabÞ
1�P2

ba

P1
n¼1

Cnzþ P2
bað1þKabÞ
1�P2

ba

P1
n¼1

Cnz; z 2 Sa

P1
n¼1

/nðzÞ þ K�1
cb

P1
n¼1

xnþ1
b2

z

� �
�
P1
n¼1

Cnþ1z
� �

; z 2 Sb

/0ðzÞ þPbcx0
b2

z

� �
�PbcC0zþ ð1þ K�1

cb Þ
P1
n¼1

xnþ1
b2

z

� �
�
P1
n¼1

Cnþ1z
� �

; z 2 Sc

8>>>>>>><
>>>>>>>:

ð45aÞ
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xðzÞ ¼

ð1þPabÞ
P1
n¼1

xnðzÞ þ a2�b2

z

P1
n¼1

/0nðzÞ
� �

þ Kab�PabþP2
bað1þPabÞ

1�P2
ba

P1
n¼1

Cn
a2

z þ
Pbað1þKabÞ

1�P2
ba

P1
n¼1

Cn
a2

z ; z 2 Sa

P1
n¼1

xnðzÞ þP�1
cb

P1
n¼1

/nþ1
b2

z

� �
þ b2ðb2�a2ÞK�1

cb
z3

P1
n¼1

x0nþ1
b2

z

� �

þ K�1
cb ðb

2�a2Þ
z

P1
n¼1

Cnþ1 � b2

z

P1
n¼1

Cnþ1; z 2 Sb

x0ðzÞ þ Kbc/0
b2

z

� �
� C0

b2

z þ ð1þPcbÞC1
b2

z þ ð1þP�1
cb Þ
P1
n¼1

/nþ1
b2

z

� �
; z 2 Sc

8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

ð45bÞ
where the recurrence formulae for /n(z) and xn(z) are
/nþ1ðzÞ ¼

ð1þ KbcÞ/0ðzÞ þPcbC1z; n ¼ 0

PcbKab/n
a2

b2 z
� �

þ a2ða2�b2ÞPcbPabz3

b6 x0n
a2

b2 z
� �

� b4

a4
ða2�b2Þ

z2 /0n
a2

b2 z
� �

þ b2

a2
ða2�b2Þ

z /00n
a2

b2 z
� �

þ Cn
a2

b4

z2

h i
þ PcbðKabþPbaÞ

1�Pba

a2

b2 Cnzþ PcbPbað1þKabÞ
1�Pba

a2

b2 CnzþPcbCnþ1z; n ¼ 1; 2; 3; . . .

8>><
>>:

ð46aÞ

xnþ1ðzÞ ¼
ð1þPbcÞx0ðzÞ � ð1þPbcÞC0

b2

z þ C1
b2

z ; n ¼ 0

KcbPab xn
a2

b2 z
� �

þ a2�b2

a2
b2

z /0n
a2

b2 z
� �

� Cn
b2

z

h i
þ Cnþ1

b2

z ; n ¼ 1; 2; 3; . . .

8<
: ð46bÞ
with Cn ¼ /0nð0Þ.
For a special case when material a and material b are the same, Eq. (45) reduces to
/ðzÞ ¼
ð1þ KbcÞ/0ðzÞ þPcbC1z; z 2 Sb

/0ðzÞ þPbcx0
b2

z

� �
�PbcC0z; z 2 Sc

(
ð47aÞ

xðzÞ ¼
ð1þPbcÞx0ðzÞ � ð1þPbcÞC0

b2

z þ C1
b2

z ; z 2 Sb

x0ðzÞ þ Kbc/0
b2

z

� �
� C0

b2

z þ ð1þPcbÞC1
b2

z ; z 2 Sc

8<
: ð47bÞ
where
C0 ¼
F e�ic

2pð1þ jcÞ
1

z0

C1 ¼
ð1þ KbcÞðPcbC0 þ C0Þ

1�P2
cb
which is the solution to the corresponding single inclusion problem (Honein and Herrmann, 1990).
Putting Kbc = Pbc = �1 and substituting Eqs. (7) and (15) into (47), the solution to the corresponding

hole problem under a point force is obtained as
/ðzÞ ¼
0; z 2 Sb

�F
2pð1þjcÞ eic logðz� z0Þ þ jce

ic log b2

z � z0

� �
� e�icðz�z0Þ

b2
z �z0

� 	 � ze�ic

z0

� �
; z 2 Sc

8<
: ð48aÞ

xðzÞ ¼
0; z 2 Sb

�F
2pð1þjcÞ

b2

z
eic

ðz�z0Þ � jce
�ic logðz� z0Þ � eicz0

ðz�z0Þ � e�ic log b2

z � z0

� �
� ze�ic

z0

h i
; z 2 Sc

(
ð48bÞ
which is in agreement with the result obtained by Honein and Herrmann (1988).
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3.2. Case II: A point force embedded in Sb

When singularity or a point force is embedded in Sb, the problem becomes more difficult to solve. To
satisfy the single-valued conditions of displacements and traction, the stress functions must have the form
/ðzÞ ¼

P1
n¼1

/anðzÞ; z 2 Sa

/0ðzÞ þ
P1
n¼1

½/nðzÞ þ /bnðzÞ�; z 2 Sb

�F eic

2pð1þjcÞ log z
bþ /c0ðzÞ þ

P1
n¼1

/cnðzÞ; z 2 Sc

8>>>>>>>>><
>>>>>>>>>:

ð49aÞ

xðzÞ ¼

P1
n¼1

xanðzÞ; z 2 Sa

x0ðzÞ þ
P1
n¼1

xnðzÞ þ xbnðzÞ½ �; z 2 Sb

jcF e�ic

2pð1þjcÞ log z
bþ xc0ðzÞ þ

P1
n¼1

xcnðzÞ; z 2 Sc

8>>>>>>>>><
>>>>>>>>>:

ð49bÞ
By the same arguments as in case I, the alternating technique is applied to solve the current problem.
First, we regard regions Sa and Sb composed of the same material b and region Sc of material c. /1(z)
and x1(z) holomorphic (except at z = 0) in Sa [ Sb, /c0(z)and xc0(z) holomorphic in Sc are introduced
to satisfy the continuity of traction and displacement across L that
/1ðqÞ þ x1ðqÞ þ /�0ðqÞ þ x�0ðqÞ ¼ /c0ðqÞ þ xc0ðqÞ ð50Þ
1

Gb
½jb/1ðqÞ � x1ðqÞ þ jb/

�
0ðqÞ � x�0ðqÞ� ¼

1

Gc
½jc/c0ðqÞ � xc0ðqÞ� ð51Þ
where
/�0ðzÞ ¼ �
F eic

2pð1þ jbÞ
log b� bz0

z

� �
ð52Þ

x�0ðzÞ ¼
F

2pð1þ jbÞ
z0 �

b2

z

� �
eic

z� z0

þ jbe�ic log b� bz0

z

� �� �
ð53Þ
By the standard analytical continuation arguments it follows that
x1
b2

z

� �
þ /�0ðzÞ � /c0ðzÞ � C1z ¼ 0; z 2 Sc ð54Þ

xc0

b2

z

� �
� /1ðzÞ � x�0

b2

z

� �
� C1z ¼ 0; z 2 Sa [ Sb ð55Þ

jb/
�
0ðzÞ � x1

b2

z

� �
Gb

� jc/c0ðzÞ
Gc

þ C1z
Gb
¼ 0; z 2 Sc ð56Þ

x�0
b2

z

� �
� jb/1ðzÞ
Gb

�
xc0

b2

z

� �
Gc

þ C1z
Gb
¼ 0; z 2 Sa [ Sb ð57Þ
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Decoupling of Eqs. (54)–(57) yields
/1ðzÞ ¼ Pcbx�0
b2

z

� �
þPcbC1z; z 2 Sa [ Sb ð58Þ

x1ðzÞ ¼ Kcb/
�
0

b2

z

� �
þ C1

b2

z
; z 2 Sa [ Sb ð59Þ

/c0ðzÞ ¼ ð1þ KcbÞ/�0ðzÞ; z 2 Sc ð60Þ

xc0ðzÞ ¼ ð1þPcbÞx�0ðzÞ þ ð1þPcbÞC1
b2

z
; z 2 Sc ð61Þ
where C1 ¼ /01ð0Þ.
Since this result is based on the assumption that region Sa is made up of material b, it cannot satisfy the

continuity condition across L*, which lies between material a and b.
In the second step, we assume region Sb and Sc be made up of the same material b and region Sa of mate-

rial a. Additional terms /b1(z) and xb1(z) holomorphic in Sb [ Sc, xa1(z) and xa1(z) holomorphic (except at
z = 0) in Sa are introduced to satisfy the continuity conditions across L* that
/a1ðrÞ þ xa1ðrÞ ¼ /1ðrÞ þ /b1ðrÞ þ xa
1ðrÞ þ xb1ðrÞ þ /0ðrÞ þ x0ðrÞ ð62Þ

ja/a1ðrÞ � xa1ðrÞ
Ga

¼ jb½/b1ðrÞ þ /1ðrÞ þ /0ðrÞ� � ½xb1ðrÞ þ xa
1ðrÞ þ x0ðrÞ�

Gb
ð63Þ
where xa
1ðzÞ ¼ x1ðzÞ þ ða

2�b2Þ
z /01ðzÞ:

Based on the method of analytical continuation, we have
/a1ðzÞ � /1ðzÞ � xb1

a2

z

� �
� /0ðzÞ � C0z� C1zþ Ca1z ¼ 0; z 2 Sa ð64Þ

/b1ðzÞ þ xa
1

a2

z

� �
þ x0

a2

z

� �
� xa1

a2

z

� �
� C0z� C1zþ Ca1z ¼ 0; z 2 Sb [ Sc ð65Þ

ja/a1ðzÞ
Ga

�
jb/1ðzÞ þ jb/0ðzÞ � xb1

a2

z

� �
Gb

þ C0z
Gb
þ C1z

Gb
� Ca1z

Ga
¼ 0; z 2 Sa ð66Þ

jb/b1ðzÞ � xa
1

a2

z

� �
� x0

a2

z

� �
Gb

þ
xa1

a2

z

� �
Ga

þ C0z
Gb
þ C1z

Gb
� Ca1z

Ga
¼ 0; z 2 Sb [ Sc ð67Þ
Solve Eqs. (64)–(67) to obtain
/a1ðzÞ ¼ ð1þ KabÞ½/1ðzÞ þ /0ðzÞ� þPbaðCa1 � C0Þz; z 2 Sa ð68Þ

xa1ðzÞ ¼ ð1þPabÞ½x0ðzÞ þ xa
1ðzÞ� � ð1þPabÞC1

a2

z
þ ðCa1 � C0Þ

a2

z
; z 2 Sa ð69Þ

/b1ðzÞ ¼ Pab x0

a2

z

� �
þ xa

1

a2

z

� �� �
�PabðC0 þ C1Þz; z 2 Sb [ Sc ð70Þ

xb1ðzÞ ¼ Kab /0

a2

z

� �
þ /1

a2

z

� �� �
� ðC0 þ C1Þ

a2

z
þ ð1þPbaÞCa1

a2

z
; z 2 Sb [ Sc ð71Þ
where C0 ¼ /00ð0Þ and Ca1 ¼ /0a1ð0Þ.
Since this result is based on the assumption that region Sc is made up of material b, it cannot satisfy the

continuity conditions across L.
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In the third step, we again regard regions Sa and Sb composed of the same material b and region Sc of
material c. Additional terms /2(z), x2(z) holomorphic (except at z = 0) in Sa [ Sb and /c1(z), xc1(z) holo-
morphic in Sc are introduced to satisfy the continuity conditions across L that
/b1ðqÞ þ xb
b1ðqÞ þ /2ðqÞ þ x2ðqÞ ¼ /c1ðqÞ þ xc1ðqÞ ð72Þ

1

Gb
fjb½/b1ðqÞ þ /2ðqÞ� � ½xb

b1ðqÞ þ x2ðqÞ�g ¼
1

Gc
½jc/c1ðqÞ � xc1ðqÞ� ð73Þ
where xb
b1ðzÞ ¼ xb1ðzÞ þ ðb

2�a2Þ
z /0b1ðzÞ.

By applying the standard analytical continuation arguments, it follows that
/b1ðzÞ þ x2

b2

z

� �
� /c1ðzÞ � C2z ¼ 0; z 2 Sc ð74Þ

xc1

b2

z

� �
� /2ðzÞ � xb

b1

b2

z

� �
� C2z ¼ 0; Sa [ Sb ð75Þ

1

Gb
jb/b1ðzÞ � x2

b2

z

� �� �
� jc

Gc
/c1ðzÞ þ

C2z
Gb
¼ 0; z 2 Sc ð76Þ

� 1

Gc
xc1

b2

z

� �
� 1

Gb
jb/2ðzÞ � xb

b1

b2

z

� �� �
þ C2z

Gb
¼ 0; Sa [ Sb ð77Þ
Decoupling of Eqs. (74)–(77) yields
/2ðzÞ ¼ Pcbxb
b1

b2

z

� �
þPcbC2z; z 2 Sa [ Sb ð78Þ

x2ðzÞ ¼ Kcb/b1

b2

z

� �
þ C2

b2

z
; z 2 Sa [ Sb ð79Þ

/c1ðzÞ ¼ ð1þ KcbÞ/b1ðzÞ; z 2 Sc ð80Þ

xc1ðzÞ ¼ ð1þPcbÞxb
b1ðzÞ þ ð1þPcbÞC2

b2

z
; z 2 Sc ð81Þ
where C2 ¼ /02ð0Þ.
In the fourth step, regions Sb and Sc are assumed to make up with material b again. Repetitions of sec-

ond and third step, the analytical continuation method is alternatively applied to two interfaces to obtain
the additional terms /an(z), /bn (z), /cn(z), /n+1(z) and xan(z), xbn(z), xcn(z), xn+1(z) (n = 2,3,4,. . .). The
complete stress functions can be finally obtained as
/ðzÞ ¼

ð1þ KabÞ/0ðzÞ þ ð1þ KabÞ
P1
n¼1

/nðzÞ �PbaC0zþ Pbað1þKabÞ
1�P2

ba
ðC0 þPbaC0Þz

þ Pbað1þKabÞ
1�P2

ba

P1
n¼1

ðCn þPbaCnÞz; z 2 Sa

/0ðzÞ þPabx0
a2

z

� �
þ
P1
n¼1

/nðzÞ �PabC0zþ K�1
cb

P1
n¼1

xnþ1
b2

z

� �
� Cnþ1z

h i
; z 2 Sb

�F eic

2pð1þjcÞ log z
bþ ð1þ KcbÞ/�0ðzÞ þ ð1þ K�1

cb Þ
P1
n¼1

xnþ1
b2

z

� �
� Cnþ1z

h i
; z 2 Sc

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

ð82aÞ
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xðzÞ ¼

ð1þPabÞ x0ðzÞ þ
P1
n¼1

xnðzÞ þ a2�b2

z

P1
n¼1

/0nðzÞ
� �

þ
P1
n¼1

ð1þKabÞðPbaCnþCnÞ
1�Pba

a2

z

þ ð1þKabÞðPbaC0þC0Þ
1�P2

ba

a2

z � C0
a2

z � ð1þPbaÞ
P1
n¼1

Cn
a2

z ; z 2 Sa

x0ðzÞ þ
P1
n¼1

xnðzÞ þ Kab/0
a2

z

� �
þ ð1þKabÞðPbaC0þC0Þ

1�P2
ba

a2

z þP�1
cb

P1
n¼1

/nþ1
b2

z

� �

þK�1
cb

b2ðb2�a2Þ
z3

P1
n¼1

x0nþ1
b2

z

� �
� C0

a2

z �
P1
n¼1

Cnþ1
b2

z þ b2�a2

z K�1
cb

P1
n¼1

Cnþ1; z 2 Sb

jcF e�ic

2pð1þjcÞ log zþ ð1þPcbÞx�0ðzÞ þ ð1þPcbÞC1
b2

z þ ð1þP�1
cb Þ
P1
n¼1

/nþ1
b2

z

� �
; z 2 Sc

8>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>:

ð82bÞ
where the recurrence formulae for /n(z) and xn(z) are
/nþ1ðzÞ ¼

Pcbx�0
b2

z

� �
þPcbC1z; n ¼ 0

PcbKab/n
a2

b2 z
� �

þ a2ða2�b2ÞPcbPabz3

b6 x0n
a2

b2 z
� �

� b4

a4
ða2�b2Þ

z2 /0n
a2

b2 z
� �h

þb2

a2
ða2�b2Þ

z /00n
a2

b2 z
� �

þ Cn
a2

b4

z2

i
þ PcbðKabþPbaÞ

1�Pba

a2

b2 Cnz

þ PcbPbað1þKabÞ
1�Pba

a2

b2 CnzþPcbCnþ1z; n ¼ 1; 2; 3; . . .

8>>>>>>>><
>>>>>>>>:

ð83aÞ

xnþ1ðzÞ ¼
Kcb/

�
0

b2

z

� �
þ C1

b2

z ; n ¼ 0

KcbPab xn
a2

b2 z
� �

þ a2�b2

a2
b2

z /0n
a2

b2 z
� �

� Cn
b2

z

h i
þ Cnþ1

b2

z ; n ¼ 1; 2; 3; . . .

8><
>: ð83bÞ
with Cn ¼ /0nð0Þ.
For the special case that material a and material b are the same, Eq. (82) reduces to
/ðzÞ ¼

� F eic

2pð1þjbÞ logðz� z0Þ þ PcbF
2pð1þjbÞ

ðz0�zÞe�ic

b2=z�z0
þ jbeic log b� z0z

b

� 	h i
þ P2

cbF ðPcb�jbÞz0e�icþð1�PcbjbÞz0eic½ �
2pð1þjbÞð1�P2

cbÞ
z

b2 ; z 2 Sb

�F eic

2pð1þjcÞ log z
b�

ð1þKcbÞF eic

2pð1þjbÞ log b� bz0

z

� 	
; z 2 Sc

8>>>><
>>>>:

ð84aÞ

xðzÞ ¼

F
2pð1þjbÞ ðz0 � b2

z Þ eic

ðz�z0Þ
þ jbe�ic logðz� z0Þ � Kcbe�ic log b� z0z

b

� 	h i
þ PcbF ð1�PcbjbÞe�icz0þðPcb�jbÞeicz0½ �

2pð1þjbÞð1�P2
cbÞ

1
z ; z 2 Sb

jcF e�ic

2pð1þjcÞ log z
bþ

ð1þPcbÞF
2pð1þjbÞ ðz0 � b2

z Þ eic

ðz�z0Þ
þ jbe�ic log b� bz0

z

� 	h i
þ Pcbð1þPcbÞF ð1�PcbjbÞe�icz0þðPcb�jbÞeicz0½ �

2pð1þjbÞð1�P2
cbÞ

1
z ; z 2 Sc

8>>>>>>>>><
>>>>>>>>>:

ð84bÞ
which is the solution to the corresponding single inclusion problem (Honein and Herrmann, 1990).
If a point force is assumed to situate at origin, Eq. (84) can be further simplified to
/ðzÞ ¼
� F eic

2pð1þjbÞ log z� PcbF e�ic

2pð1þjbÞ
z2

b2 þ PcbjbF eic

2pð1þjbÞ log b; z 2 Sb

�F eic

2pð1þjcÞ log z
b�

ð1þKcbÞF eic

2pð1þjbÞ log b; z 2 Sc

8<
: ð85aÞ
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xðzÞ ¼
� F eic

2pð1þjbÞ
b2

z2 þ jbF e�ic

2pð1þjbÞ log z� Kcbe�icF
2pð1þjbÞ log b; z 2 Sb

jcF e�ic

2pð1þjcÞ log z
bþ

ð1þPcbÞF
2pð1þjbÞ �

b2eic

z2 þ jbe�ic log b
h i

; z 2 Sc

8<
: ð85bÞ
which is in agreement with the results provided by Dundurs (1963).

3.3. Case III: A point force embedded in Sa

When singularity or a point force is embedded in Sa, similar to the case II with singularity embedded in
Sb, the stress functions must have the form
/ðzÞ ¼

/0ðzÞ þ /a0ðzÞ þ
P1
n¼1

/anðzÞ; z 2 Sa

�F eic

2pð1þjbÞ log z
aþ

P1
n¼1

½/nðzÞ þ /bnðzÞ�; z 2 Sb

�F eic

2pð1þjcÞ log z
bþ

P1
n¼1

/cnðzÞ; z 2 Sc

8>>>>>>><
>>>>>>>:

ð86aÞ

xðzÞ ¼

x0ðzÞ þ xa0ðzÞ þ
P1
n¼1

xanðzÞ; z 2 Sa

jbF e�ic

2pð1þjbÞ log z
aþ

P1
n¼1

½xnðzÞ þ xbnðzÞ�; z 2 Sb

jcF e�ic

2pð1þjcÞ log z
bþ

jbGcF e�ic

pGbð1þjbÞ log b
aþ

P1
n¼1

xcnðzÞ; z 2 Sc

8>>>>>>><
>>>>>>>:

ð86bÞ
By a way similar to the previous approach, we can find
/ðzÞ ¼

/0ðzÞ þ /a0ðzÞ þ ð1þ K�1
ab Þ
P1
n¼1

xnþ1
a2

z

� �
� ð1þ K�1

ab Þ
P1
n¼1

Cnz

� ð1þK�1
ab þK�1

ab PbaÞð1þKabÞ
1�P2

ba
Pba

P1
n¼1

Cn þ
P1
n¼1

Cn

� �
z; z 2 Sa

�F eic

2pð1þjbÞ log z
aþ

P1
n¼1

/nðzÞ þ K�1
ab

P1
n¼1

xnþ1
a2

z

� �
� ð1þK�1

ab Þ
1�Pba

P1
n¼1

½ðPbaCn þ CnÞz� � K�1
ab

P1
n¼1

Cnz; z 2 Sb

�F eic

2pð1þjcÞ log z
bþ ð1þ KcbÞ

P1
n¼1

/nðzÞ; z 2 Sc

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

ð87aÞ

xðzÞ ¼

x0ðzÞ þ xa0ðzÞ þ ð1þP�1
ab Þ
P1
n¼1

/nþ1
a2

z

� �
þ ð1þKabÞ

1�P2
ba

P1
n¼1

ðCn þPbaCnÞ a2

z ; z 2 Sa

jbF e�ic

2pð1þjbÞ log z
aþ

P1
n¼1

xnðzÞ þP�1
ab

P1
n¼1

/nþ1
a2

z

� �
þ a2ða2�b2Þ

z3 K�1
ab

P1
n¼1

x0nþ1
a2

z

� �

þ
P1
n¼1

Cn
a2

z þ a2�b2

z K�1
ab

ð1þKabÞPba
1�Pba

P1
n¼1

Cn þ ð2þKab�PbaÞ
1�Pba

P1
n¼1

Cn

� �
; z 2 Sb

jcF e�ic

2pð1þjcÞ log z
bþ

jbGcF e�ic

pGbð1þjbÞ log b
aþ ð1þPcbÞ

P1
n¼1

xnðzÞ þ ð1þPcbÞ ðb
2�a2Þ

z

P1
n¼1

/0nðzÞ

þð1þPcbÞ
P1
n¼1

Cn
b2

z ; z 2 Sc

8>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>:

ð87bÞ
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The recurrence formulae for /n(z) and xn(z) are
/nþ1ðzÞ ¼

ð1þ KbaÞ/�0ðzÞ; n ¼ 0

PabKcb/n
b2

a2 z
� �

þ PcbPabb2ðb2�a2Þz3

a6 x0n
b2

a2 z
� �

� a4

b4
ðb2�a2Þ

z2 /0n
b2

a2 z
� �h

þ a2

b2
b2�a2

z /00n
b2

a2 z
� �i

þPab
b2

a2 � 1
� �

ðCn �PcbCnÞz; n ¼ 1; 2; 3; . . .

8>>>>><
>>>>>:

ð88aÞ

xnþ1ðzÞ ¼

ð1þPbaÞx�0ðzÞ þ ð1þPbaÞCa0
a2

z ; n ¼ 0

Kab Pcbxn
b2

a2 z
� �

þPcb
b2�a2

b2
a2

z /0n
b2

a2 z
� �

þPcbCn
a2

z

h i

þ ð1þKabÞðPbaCnþCnÞ
1�Pba

a2

z þ Cn
a2

z ; n ¼ 1; 2; 3; . . .

8>>>>><
>>>>>:

ð88bÞ
with
Cnþ1 ¼

Pcbð1þPbaÞF
2pð1þjaÞb2ð1�P2

cbÞ
½Pcbðe�icz0 � jaeicz0Þ þ ðeicz0 � jae�icz0Þ�

þ PbaPcbF
2pð1þjaÞb2ðPbaþ1Þð1�P2

cbÞ
½Pbaðz0eic � jaz0e�icÞ þ ðz0e�ic � jaz0eicÞ�

þ PbaP2
cbF

2pð1þjaÞb2ðPbaþ1Þð1�P2
cbÞ
½Pbaðz0e�ic � jaz0eicÞ þ ðz0eic � jaz0e�icÞ�; for n ¼ 0

P2
cb

ð1�P2
cbÞ

a2

b2
ðKabþPbaÞCnþð2þKab�PbaÞCn

1�Pba

h i
þ Pcb

ð1�P2
cbÞ

a2

b2
ðKabþPbaÞCnþð2þKab�PbaÞCn

1�Pba

h i
; for n ¼ 1; 2; 3 . . .

8>>>>>>>><
>>>>>>>>:
where
/a0ðzÞ ¼ Pbax�0
a2

z

� �
þPbaCa0z

xa0ðzÞ ¼ Kba/
�
0

a2

z

� �
þ Ca0

a2

z

x�0ðzÞ ¼
F eic

2pð1þ jaÞ
z0 �

a2

z

� �
1

ðz� z0Þ
þ jaF e�ic

2pð1þ jaÞ
log a� az0

z

� �

/�0ðzÞ ¼ �
F eic

2pð1þ jaÞ
log a� az0

z

� �

Ca0 ¼
PbaF

2pð1þ jaÞa2ð1�P2
baÞ
½ðz0eic � jaz0e�icÞ þPbaðz0e�ic � jaz0eicÞ�

/0ðzÞ ¼ �
F eic

2pð1þ jaÞ
logðz� z0Þ

x0ðzÞ ¼
F eic

2pð1þ jaÞ
z0 �

a2

z

� �
1

ðz� z0Þ
þ jaF e�ic

2pð1þ jaÞ
logðz� z0Þ
For a special case when material b and c are the same, Eq. (87) reduces to
/ðzÞ ¼

� F eic

2pð1þjaÞ logðz� z0Þ þ PbaF
2pð1þjaÞ

ðz0�zÞe�ic

a2=z�z0
þ jaeic log a� z0z

a

� 	h i
þ P2

baF ðPba�jaÞz0e�icþð1�PbajaÞz0eic½ �
2pð1þjaÞð1�P2

baÞ
z

a2 ; z 2 Sb

�F eic

2pð1þjbÞ log z
a�

ð1þKbaÞF eic

2pð1þjaÞ log a� az0

z

� 	
; z 2 Sc

8>>>><
>>>>:

ð89aÞ
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xðzÞ ¼

F
2pð1þjaÞ z0 � a2

z

� �
eic

ðz�z0Þ
þ jae�ic logðz� z0Þ � Kbae�ic log a� z0z

a

� 	h i
þ PbaF ½ð1�PbajaÞe�icz0þðPba�jaÞeicz0�

2pð1þjaÞð1�P2
baÞ

1
z ; z 2 Sb

jbF e�ic

2pð1þjbÞ log z
aþ

ð1þPbaÞF
2pð1þjaÞ z0 � a2

z

� �
eic

ðz�z0Þ
þ jae�ic log a� az0

z

� 	h i
þ Pbað1þPbaÞF ½ð1�PbajaÞe�icz0þðPba�jaÞeicz0�

2pð1þjaÞð1�P2
baÞ

1
z ; z 2 Sc

8>>>>>>>><
>>>>>>>>:

ð89bÞ
which is exactly the same as the expression in Eq. (84) if one replaces Pba, Kba, ja, jb, a in Eq. (89) with Pcb,
Kcb, jb, jc, b, respectively.
4. Results and discussion

The stress functions as indicated in Eqs. (45) and (82) are expressed in terms of /n(z) and xn(z)
(n = 0,1,2 . . .), which may be calculated from a homogeneous solution /0(z) and x0(z) by the recurrence
formulae Eqs. (46) and (83). The rate of convergence depends on the ratios j/n+1(z)j/j/n(z)j and
jxn+1(z)j/jxn(z)j, which in turn depend on the non-dimensional bimaterial constants Kab and Pab (or Kcb

and Pcb). For most combinations of materials, K and P are less than 1 and 0.5, respectively, which guar-
antee rapid convergence. Consequently, the convergence rate becomes more rapid as the differences of the
elastic constants of the neighboring materials get smaller.

Figs. 2 and 3 respectively show the interfacial normal and shear stress between material b and c for a
point force located at Sc. It is seen that the maximum interfacial normal stress increases as a point force
is applied closer to the interface as shown in Fig. 2. The interfacial shear stress vanishes at h = 90� and
h = 270� due to loading symmetry as shown in Fig. 3. Similar trend can also be found for the case of a point
force embedded in Sb as shown in Figs. 4 and 5 except that the maximum interfacial normal stress becomes
compressive for the present case. When material a is non-existent, the present trimaterial problem is
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degenerated to the thin-layer hole problem whose solution can be obtained by putting Kab = Pab = �1 in
Eq. (45) or Eq. (82). The distribution of the interfacial stresses for a thin-layer hole structure with a point
force embedded in Sc is shown in Figs. 6 and 7. It is seen that the trend for the present case is nearly the
same as that of the trimaterial one, but the magnitude of interfacial stresses for a thin-layer hole structure is
less than that of a trimaterial. This is simply because that the interfacial stresses can be further intensified
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(or diminished) by the adjacent material having a higher (or lower) stiffness. Note that all the calculated
results shown in Figs. 2–7 are determined by the sum up to n = 4 of Eq. Eqs. (45) and (82), since they are
checked to achieve a very good convergence of the series form solutions. It is found that the contributions
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of terms with n = 1,2,3 and 4 to the normal and shear stresses rrrb/F and rrhb/F for the case r0/b = 2 in
Figs. 2 and 3 are approximately 36.25%, 8.06%, 2.01% and 0.48% respectively. It is likely that the error
of approximations with terms up to n = 4 is less than 0.5%.
5. Conclusion

An alternative efficient procedure is established to analyze plane elasticity problems of a three-phase cir-
cularly cylindrical layered media subject to an arbitrary point force. Within the framework of the procedure
of analytical continuation and the method of successive approximations, the solution associated with the
heterogeneous problem is sought as transformation on the solution to the corresponding homogeneous
problem. It should be emphasized that the method of the present approach can be also extended to solve
the problem consisting of any number of layered medium. The convergence rate of the series solution
depends on the material combinations in such a way that the convergence rate becomes more rapid if
the differences of elastic constants of adjacent materials get smaller.
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