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Abstract

This paper presents an alternative efficient procedure to analyze plane elasticity problems of a circularly cylindrical
layered media subject to an arbitrary point force. Based on the method of analytical continuation in conjunction with
the alternating technique, the elastic fields of the three-phase media are derived. A rapidly convergent series solution
which is expressed in terms of an explicit general term of the complex potential of the corresponding homogeneous
problem is obtained in an elegant form. As a numerical illustration, the interfacial stresses are presented for different
material combinations and for different positions of the point force.
© 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

In view of the rapidly increasing use of composite materials in many engineering applications, consider-
able research activities in the area of stress analysis of layered medium have been of significant concern in
recent years. The interaction between singularities and multiple-phase materials becomes an important
topic in studying the damage mechanism of composite structures. Because of the inherent heterogeneous
nature of the composite, the analysis of such materials is much more involved than that of homogenecous
counterparts. For multi-layered composites, the problem becomes more complicated since solutions to the
elasticity problem for all layers are required. Consequently, the conventional procedure of stress analysis of
multi-layered media results in having to solve a system of simultaneous equations for a large number of
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unknown constants. The complexity of such a procedure can be found in the work of Iyengar and Alwar
(1964) as well as Chen (1971) who analyzed the semi-infinite medium composed of isotropic layers. As an
alternative efficient approach to the analysis of multi-layered media, various solution procedures have been
developed. Bufler (1971) used the transfer matrix approach to convert the boundary value problem to an
equivalent initial value problem based on the mixed formulation of elasticity proposed by Vlasov and
Leontev (1966). This transfer matrix is expressed in terms of the infinite series expansion allowing solutions
with various orders of approximation to be obtained. Based on the flexibility matrix method, Small and
Booker (1984) performed the stress analysis of a layered medium resting on a rigid foundation. This method
has been found to have an advantage of significant reducing the number of simultaneous equations. Lin
and Keer (1989) also used the flexibility matrix method together with the boundary integral formulation
to deal with a vertical crack in a layer medium. Based on the Fourier transform technique in conjunction
with the stiffness matrix approach, Choi and Thangjitham (1991) obtained the solutions of multi-layered
anisotropic elastic media. Choi and Earmme (2002a,b) employed the alternating technique to obtain the
solution of singularity problems in an isotropic and anisotropic plane layered trimaterial. However, for
the analogous problems of multi-layered media with circular interfaces, more mathematical difficulties
are encountered. Based on the Laurent series expansion, Luo (1991) found a solution for an edge disloca-
tion in a three-phase composite cylinder. Their results are valid only for the case that an edge dislocation (or
singularity) is situated at the intermediate annular region of composite structure.

In this paper we consider the problem of an isotropic three-phase circularly cylindrical media interacted
with an arbitrary point force. A point force (or singularity) considered in this paper is located either in the
matrix or in the inclusion. The proposed method is based on the technique of analytical continuation that is
alternatively applied across the two concentric circular interfaces in order to derive the trimaterial solution
in a series form from the corresponding homogeneous solution. The plane of the paper is as follows. The
general formulation for plane isotropic elasticity is provided in Section 2. The general form of the complex
potentials of the stress functions for a trimaterial is provided in Section 3. Some numerical results are
discussed in Section 4. Finally, Section 5 concludes the article.

2. Isotropic elasticity

For a two-dimensional theory of elasticity, the components of displacement and traction force can be
expressed in terms of two stress functions ¢(z) and Y(z) as (Muskhelishvili, 1953)
2G(u + iv) = kd(z) — z¢'(

—z) — () (1)
—Y+iX = ¢(2) +2¢'(2) + Y(2) (2)

where G is the shear modulus, k = 3 — 4v, for plane strain and (3 — v)/(1 + v), for plane stress with v being
the Poisson’s ratio. Here a superimposed bar represents the complex conjugate. The components stress in
polar coordinates are related to ¢(z) and (z) by (Muskhelishvili, 1953)

O + 000 =2 (2) + ¢/ (2)] ) (3)
O+ = ¢'(2) + ) |76'E) + V@) 4)

For the problem associated with an isotropic elastic bimaterial, the stresses are found to depend on only
two non-dimensional Dundurs parameters (Dundurs, 1969)
G(I(Kb‘i’l)*Gb(Ka*F l) Ga(K},* 1) *G[;(Ka* l)

ab — ) ab — 5
b = Gy + 1)+ Gyl + 1) Bay Gu(kp + 1) + Gy(Ka + 1) (3)
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where a and b refer to the two materials composing the bimaterial. Another pairs associated with the above
two parameters are defined as

_ Oap + ﬁab

Aab - Hab = Fab — ﬂab (6)

1 - ﬁab ’ 1 + ﬁab
which will be used in our subsequent derivations for trimaterial problems.

Consider a point force of magnitude F enclosing an angle y with the x;-axis embedded in a point
2y = roe'® of an infinite homogeneous medium, the solutions are (Muskhelishvili, 1953)

b0 =~ 32y V0B = 0 )

kFe Fel Zy

] log(z — z) + o

lp(](z):27r(l—i—1c l4+x)z—2z

(8)
These fields will be used for the corresponding problem of the same singularity in a trimaterial in the fol-
lowing sections.

3. A singularity in a trimaterial and the alternating technique

To analyze a singularity in a trimaterial with two concentric circular interfaces as shown in Fig. 1, the
alternating technique together with the method of analytical continuation is applied. Since it is difficult to
find a solution satisfying all the continuity conditions along two interfaces at the same time, the method of
analytical continuation should be applied to two interfaces alternatively.

For a region bounded by a circle, say ¢ = |z|, Egs. (1), (2) and (4), respectively can be rewritten as

2G(u +iv) = K (z) — w(z) + <‘; - z> ¢ (2) (9)

Yt =66 0@ + (:-£)7E (10)

Fig. 1. A point force (or singularity) in a trimaterial.
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v tion =96 - 2@ + (1-S)T@+ (S-2) 7@ ()
where
0(z) == ¢') + () (12)

3.1. Case I: A point force embedded in S.

Assume that regions S,, S, and S, occupied with material @, b and ¢, respectively are perfectly bonded
along the interfaces r = @ and r = b (see Fig. 1). The alternating technique is applied to solve the problem of
a trimaterial subjected a singularity in region S, by considering the following steps.

First, we regard regions S, and S;, composed of the same material » and region S, of material ¢. ¢(z) and
1(z) holomorphic (except at z = 0) in S, U Sp, ¢.0(z) and w.o(z) holomorphic in S, are introduced to satisfy
the continuity of traction and displacement across L that

$1(p) + @1(p) = do(p) + wo(p) + deo(p) + weo(p) (13)
1 — 1 -
G ko1 (p) = 1(p)] = & [kedeo(p) + Kedho(p) — o (p) — wo(p)] (14)
where p = be'’ and
FeV » 1 KFe
=— |z —— ° 1 - 1
n(2) = 3 ( ) g (15)
By the standard analytical continuation arguments it follows that
b b’
an(—) —(f)co(z)—wo(—) —Ciz+Cyz=0, ze€S. (16)
z z
b2
d)o(z)—i—wco(?) —¢i(z) —Ciz4+Cpz=0, zeS,US, (17)
w_l(bz_z) K w_()(%) Ciz Cyz
— 0. - =0 S. 18
oL ba et =0, ze (18)
K. @co (?) Kp C12 C()Z
a(ﬁo(Z)— GL, —Eb ](Z)—’_?b_ Gc —07 ZGSaUSb (19)
Solve Egs. (16)—(19) to obtain
O1(z) = (1 + Ape)py(z) + Iy Ciz, z€S,USp (20)
_bZ —b2
(A)l(Z) = (1+Hbc)(1)()(z)—(1+Hbc)C0?+C1?, zeS, US, (21)
b2
d)c()(z) = Hbcw_o <Z> - HbcCOZa zE Sc (22)
o b2 _bZ _bZ
e (2) —Abc¢o(z) + (1 +ch)C1;—Co?, zeS. (23)

where Cy = ¢Tg(0) and C| = ¢71(0)
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Since this result is based on the assumption that region S, is made up of material b, it cannot satisfy the
continuity condition across L*, which lies between material ¢ and b.

In the second step, we assume region S;, and S, be made up of the same material » and region S, of mate-
rial a. Additional terms ¢(z) and wp;(z) holomorphic in S, U S., ¢,1(z) and w,(z) holomorphic (except at
z=0) in S, are introduced to satisfy the continuity conditions across L* that

$a1(0) + 0 (0) = §1(0) + by (0) + @ (0) + Wy (0) (24)
Katha () = 0a(0) _ 1ol () + 61(0)] — [ (o) + (o)) -
G, Gb

where w{(z) = w(z) +M¢ (z) and o = ae'’
Based on the method of analytical contmuatlon, we have

2
ba(z) — ¢1(2) — C‘)_bl<a?> —Ciz+Caz=0, z€§S, (26)
—(ad a’
by (2) + 0f (;) — Qg1 (;) —Ciz+Cyz=0, ze€SUS. (27)
aZ
kabas) B0 -P(E) cue cp
_ — —Z 2
G, G G. +Gb 0, ze€S, (28)
Kp Py (2) _w—?(é) Wal (é) Caz Ciz
_za = A 2
G, + G, Ga+Gh 0, zeS,US, (29)
Solve Egs. (26)—(29) to obtain
b1 (2) = (1 + Awp) by (2) + MpeCarz, z €S, (30)
2 2
wal(z) = (1+Hab)w?(z)_(1+Hab)aa?+cula?7 ZESa (31)
2
by (2) = bw1( > —I,Cz, zeS,US. (32)
(P P 2
Ct)bl(Z) = Aab¢1 ? + (1 + Hba)Cal ? - ?, zeS,US, (33)

where C,1 = ¢,,(0).

Since this result is based on the assumption that region S, is made up of material b, it cannot satisfy the
continuity conditions across L.

In the third step, we again regard regions S, and S, composed of the same material  and region S. of
material ¢. Additional terms ¢,(z), @w,(z) holomorphic (except at z=0) in S, U S, and ¢(z), w.(z) holo-

morphic in S, are introduced to satisfy the continuity conditions across L as
$1(p) + da(p) + 0fy(p) + @2(p) = o (p)+wc1(p) (34)
G%{Kb[d)m(p) +da(p)] = [0 (p) + 2(p)]} = [Kc(rbzl( ) — @i (p)] (35)

where @b (z) = wpi(z) + @qﬁél(z).
By applying the method of analytical continuation, we have

2
bul) + w—(b—) bale) — Cz=0, zeS, (36)
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b — (b
W1 (—) — (f)z(Z) — wgl (—) — CzZ = O, Sa U Sb (37)
z z
1 b . C
ks @)~ T () | e pu() + =0, zES. (38)
b z Gc Gb
1 b 1 — (b Coz
— awcl ? Kb¢2( ) wbl ? + —b = 07 Sa U Sb (39)
Solve Egs. (36)—(39) to obtain
b2
¢2(Z) = chwgl ( ) + chCZZ z e Sa U Sb (40)
(P b
01(2) = Ay (;) + Cz?, z€ 8, US, (41)
G1(2) = (1 +Ap) by (2), z €S, (42)
__b?
(l)cl(Z) = (1 +HC;,)C()21(Z)+(1+HC;,)C2?7 ZGSC (43)

where C, = ¢5(0).

In the fourth step, regions S;, and S, are assumed to make up with material » again. Repetitions of sec-
ond and third step, the analytical continuation method is alternatively applied to two interfaces to obtain
the additional terms ¢,(2), ¢pn(2), Den(2), Pn+1(2) and @y (2), Op(2), Ow(2), Wpr1(z) (n=2,3,4,...). The
stress functions can be finally obtained as

i%@,m&

96) = { Xl,0) + bul], €S (44a)

bo(2) + d(2) + 3 beu(2), z €S,

Zwan(z)a Ze Sa

n=1

o) = { Slon) + o)), zes, (44b)

n=

®o(z) + 00(2) + > we(z), z €S,
n=1

If one expresses the stress functions ¢(z) and w(z) in terms of ¢g(z) and wg(z) respectively, Eq. (44)
becomes

(14 40) 3 d,(2) + I8t 52 €z B 52 Tz z e,
4= S+ 470, (3—zcmﬁ,ze% (@s3)
Py )+Hbcwo( ) I1,.Coz + (1 +Acb){z wn+1< ) ZC,,+1Zj| z€S,
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<+mﬂzm»#¥i¢d

+Aab_na};t11772 1+1,4) Z a7 I'l;m 1+/11,]] » Cn é, = Sa
> L& R LR >
0@ = § o)+ 15 3 by (£) + 5 znﬂ) (43b)

A;hl(b27a2) > » oo
+-t—— 3 Co1 —Z 2 Ch1, zES
n=1 n=1

wo(2) + Ahg%(é) S GBI+ )T e+ (14115 S doy (ﬁ) zES.
where the recurrence formulae for ¢,(z) and w,(z) are
(I + Ape)o(2) + 1 Ciz, n=0
br(2) = { Merunty (52) + S lalla [0 (52) B LR gy (£2) 4 5 g (52) 4G 5
+7n“”(/1“”+””" > Cyz + HepllbaUAap) %C z4+M.4,Chz, n=12,3 ...

1-I, 1—1I1p,

(46a)
(1 + M) (z) — (1 4+ M) CoZ + T2, n=0
wyy1(2) = e _ 46b
+1() AchHab|:wn( >+az b2;¢ <g§Z>—Can—2:|+Cn+1é, 1’121,2,3,... ( )
with C, = ¢/ (0).
For a special case when material ¢« and material b are the same, Eq. (45) reduces to

(l + A],c)d)o(Z) +1.,Ciz, z€S,
47a
d)(z ¢0(Z) + Hhcw_O(é> - HbcCOZ; zE Sc ( )

(14 My )wo(z) — (1 + M )Co 2 + T2, z€S,
CO(Z) = —— (2 — 2 — 2 (47b)
0)0(2>+Abc¢0<7) —C07+(1 +Hd,)C17, ze S,

where
Fer 1
Co=rl
T 2n(l+k) %
= (14 Ape) (I sCo + Co)

1112,
which is the solution to the corresponding single inclusion problem (Honein and Herrmann, 1990).

Putting A, = I1;. = —1 and substituting Egs. (7) and (15) into (47), the solution to the corresponding
hole problem under a point force is obtained as

0, z€S,

P(z) =9 _ iy N N\ e en) s 48a
97 it [eroste - werton (£ 5) -y -] ses (352
( ) O, zeS, ( )

w\z) = i —iy ez —iy _ Zemi7 48b

27:(;4?;«0) [é (zizo) — K. " log(z — z9) — ¢ log (é - Zo) -4 }, ze S,

which is in agreement with the result obtained by Honein and Herrmann (1988).
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3.2. Case II: A point force embedded in S,

When singularity or a point force is embedded in S}, the problem becomes more difficult to solve. To
satisfy the single-valued conditions of displacements and traction, the stress functions must have the form

é%@,m&

o]

$(2) = Po(@) + 2[0.(2) + by ()], z€Ss (49a)

n=1

S 08+ dald) + X da(d). €S,

i wan(z)a z€ S,

n=1

w(z) = § wo(z) + i [0a(2) + wpi(2)], z €S, (49b)

KcFe

27( 1+KF" logb + wco( ) Z: (,L)C,,(Z), z e Sc

By the same arguments as in case I, the alternating technique is applied to solve the current problem.
First, we regard regions S, and S;, composed of the same material » and region S. of material c. ¢(z)
and w;(z) holomorphic (except at z=0) in S, U Sy, ¢.o(z)and w.o(z) holomorphic in S, are introduced
to satisfy the continuity of traction and displacement across L that

$1(p) + @1(p) + y(p) + 05(p) = deo(p) + w0 (p) (50)
1 — — 1 —_
G ko1 (p) = @1(p) + Kppy(p) — w5 (p)] = = [Kedbeo (p) — @0 (p)] (51)
where
7 bz
Po(2) = — % log (b - 70) (52)
2 i A -
R el G E=a G G Y
By the standard analytical continuation arguments it follows that
2
a1(2) + 6i(e) ~ dofe) - C=0, €, (54)
v b’
(l)co(—) —(f)l(z)—w;;(z) Cz=0, zeS,US, (55)
Kpo(2) — _1<b72) Keho(z)  Ciz
G e G =0, zeS. (56)
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Decoupling of Egs. (54)—(57) yields

2
¢l(z) = HLbOJ_S(b?> +1,Ciz, z€eS,US, (58)
2 b2
a)()— ch¢0< >+C1 , zeS,US, (59)
beo(2) = (1 + Aap) (), z€Se (60)
2
weo(2) = (14 M) y(z) + (1 +H0h)ab? ze S, (61)

where C; = ¢(0).

Since this result is based on the assumption that region S, is made up of material b, it cannot satisfy the
continuity condition across L*, which lies between material ¢ and b.

In the second step, we assume region S, and S, be made up of the same material b and region S, of mate-
rial a. Additional terms ¢(z) and wp;(z) holomorphic in S, U S., @,(z) and w,;(z) holomorphic (except at
z=0) in S, are introduced to satisfy the continuity conditions across L" that

001 (0) + 001 (0) = ¢1(0) + ¢ (0) + i (0) + p1 (0) + Po(0) + wo(0) (62)
KaPa1 (0) — @a1(0) _ Kb[¢y1(0) + @1 (0) + Po(0)] — [wp1(0) + @i(a) + wo(0)]
G, B G, (63)

where w{(z) = w(z) + “’zz;bz)q’)’l (2).
Based on the method of analytical continuation, we have

&2
bu(2) — d(z) — wpr ( ) ¢o(z) —Coz— Ciz+Cyz=0, z€S, (64)
a’ a’ a’
¢b1()+w1< >+w0< )—(D,ﬂ(?)—COZ—C]Z—FCa]Z:O, ze S, US, (65)
Koy (2) K1 (2) + Kepo(2) — w_bl<§) Coz Ciz Cyz
G, - G, +?}, ?h_?a—o, ze S, (66)
Kh(rbb] (Z) - (U_?(é) - CL)_()(é) Wal (az_2> C()Z C12 Calz
Gy + G, +?b G G, =0, zeS,US. (67)
Solve Egs. (64)—(67) to obtain
ba1(2) = (1 + Aw)[)1(2) + ¢o(2)] + Hpa(Car — Co)z, z €S, (68)
2 2
(@) = (1 + ) on(2) + (@) = (1 + )T+ (Ca — o) <, z€S, (69)
2 2
by (2) = [wo<az> + of <az>} —(Co+Cr)z, z€SUS, (70)
2 2 2 &2
whl(z):Aala[(b()(Z) +¢1< ):| _(C0+Cl) (1+Hba)Cal?a ZeSbUSc (71)

where Cy = ¢,(0) and C,; = ¢.,(0).
Since this result is based on the assumption that region S, is made up of material b, it cannot satisfy the
continuity conditions across L.
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In the third step, we again regard regions S, and S, composed of the same material » and region S, of
material ¢. Additional terms ¢(z), w,(z) holomorphic (except at z=0) in S, U S, and ¢.((z), w.((z) holo-
morphic in S, are introduced to satisfy the continuity conditions across L that

b (p )+wb1( )+ b(p) + 02(p) = b1(p) + wer (p) (72)

GL,, {Ko[¢11(p) + ba(0)] = [py (p) + 2(p)]} = Gi [Keer (p) — @i (p)] (73)

where @}, (z) = wyi (z) +Z=2 ) (2).
By applying the standard analytical continuation arguments, it follows that

b2
0@ +05(2) ~ dale) - C =0, zes, (14)
b — (b
We1 (—) — ¢2(Z) — O)Zl <—> — CzZ = 0, Su U Sb (75)
z z
1 b . C
— ks (&) — @ (=) | — = bu@) + =0, zES. (76)
b z GC Gb
L AN b,(2) — PN LSy s.us (77)
Gc (0] Z Gb Kp®y(Z wbl Z Gb — Y a b
Decoupling of Eqs. (74)—(77) yields
e
d)z(z) = chwzl (?> +11,Cyz, z€S,US, (78)
o b2 _bZ
0)2(2) = Acb¢bl (;) + Cz;, zeS,US, (79)
$(2) = (1 + Ay (z), z€Se (80)
_p
(l)cl(Z) = (1+H6b)w21(2)+(1+ch)C2?, z€eS, (81)

where C, = ¢5(0).

In the fourth step, regions S;, and S, are assumed to make up with material » again. Repetitions of sec-
ond and third step, the analytical continuation method is alternatively applied to two interfaces to obtain
the additional terms ¢,,.(2), Qpn (2), Pen(2), Pnt1(2) and w,,(2), Op(2), Be(2), Wpr1(2) (R =12,3,4,...). The
complete stress functions can be finally obtained as

Im

(14 Aw)bo(2) + (1 + Aw) X ¢, (2) — My, Coz + 2ded (Cy 4 1T,,Cy )z
n=1

4 MelltAw) SN Oy T, C)z, z €S,

b(z) = o R (82a)
Po(2) JrHahw0< ) + Z ¢,(z) — MopCoz + A ’;1 [a}n+1<bz—z> - Cn+12}, z€S,

e logi + (14 Aa)dy(2) + (1 + 4) S [@r7 (2) = Coiz], z e,

n=1
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(14 ) [wo<z> + S )+ 52 S ¢;<z>} + 5 Gt ¢

n=

+ <1+Aabf(nl;fc()+c(l & _ CO @« ( + Hba) Z é z€S,
ba '
_ = A ¢T a2 1+Aab)( 0+C0 af - 82b)
0(2) = & 00(E) + 35 00(2) + Ay (£) + LT 2 4 ) S (

A ST () T ST e S e, e,

n=1 =1

s logz + (L4 Ma)i(@) + (1 4+ Ma)Cy 5+ (14 11) 26, (%), €.
where the recurrence formulae for ¢,(z) and w,(z) are

I'[c;,wo( )—|—ch€12 n=>0

2 (@ =)0y w? |, 1 (& bt @@= 4 (2
D (32) 20002 o () 12200

b =9 " (830)
+b (a=— )d)//(zzz) _;'_%lzr_z} + b(lAIbT':Hlm @ 2 C,z
Ml ) €0 2 4 [1Cynz, n=1,2,3,...
AC]JQS_S(%) +a%7 n=0
wnH(Z) - 2 12 2 — 2 — 2 (83b)
Achab|:wn(bz ) a;zb bz¢ (Z;Z>_Cnb7:|+cn+1b77 n=1,2,37...
with C, = ¢/ (0).
For the special case that material « and material b are the same, Eq. (82) reduces to
2n(1+x1 log( 20) + 2n1(11lfn,, [(ZI?ZZ) = + 1,€7 log ( zoz)]
_ I F[(Ht-b—h‘b)zoe l’+(1 H.bh‘b)zoe’] 2
¢(z) = +— 2a(1p) (1-1T,) o ZE€S (84a)
_Felv 2 (1+Az)Feh bz
Zﬂ(filcp) log — 2n(1ixhe lo (b - 70)7 ze S,

m |:(Z_0 — b;) —20) + Kp€ —iy lOg(Z — Z()) cbe —iy IOg (b Z()z):|

Hf[JF[(FHL»bK[;)f 720+ ep—rp)e’ ’Zn] 1
+ 27z(1+lcb)(l—[7§h) 0 £ € Sb
w(z) = (84b)

Kk Fe 17 U+HIB)F | (5= _ B2 —i _ bz
Snitreg 1025 + i) [( 20— 7)) "log (b — )}
1, z€S,

Hep (14 ep)F [(1*HchKh)C7'7'Zo+(nch*'€1])0 ’Zo]
2m(141,)(1-112,)

which is the solution to the corresponding single inclusion problem (Honein and Herrmann, 1990).
If a point force is assumed to situate at origin, Eq. (84) can be further simplified to

. pFe” iy
2n(14-xp)

logz —

h2+ Mepiep e logh, z€S,

T 2a(1+xkp) 1+lc;, 2n(1+xp)

9(z) = (85a)

_ _Fel?__ (14+-Agp)Fel?
2n(14x.) logb 2n(1+xp) lOgb z€ SC
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__Fer P KpFe v A F
2n(14xp) z a2t 2n(1+Kp) lOgZ 2n(1+xp) logb ze Sb

o(z) = | (85b)

Fe (I+11)F i
3 12;\( logi + Sy | — "logh|, zeS.

which is in agreement with the results provided by Dundurs (1963).
3.3. Case IIl: A point force embedded in S,

When singularity or a point force is embedded in S, similar to the case II with singularity embedded in
Sy, the stress functions must have the form

Bol2) + duol2) + i‘i Gunl2), zES,
d(z) = 27'[711::;% ogg+ Z[ (2) + dp(2)], z€8 (86a)
27'[7{"7'1(: long) + Z d)cn( ) Z E SE

o (z) + wa(z) + Z wm(z), z€S,

w(z) = { 275 log? +Z[wn< )+ 0n(2)], z€S (86b)

27( 1+h;,

K Fe KpGoFe™

. o0
7 7 é
3Ty 1085 1 26,1y 1084 T 2:1 Wen(z), z€Se
=

By a way similar to the previous approach, we can find

$0(2) + dunle) + (14 45) D (£) = (14 4) 3 Coe

(1+Aab +Aahl]bﬁ) 1+ Aap) (Hb E C + Z C ) z€ S

1- H

(2) = o (87a)

o0

e Jogs + z b,(2) + A ; o (_) — ) S (3G + Co)e) — A S, Coz, Z €S,

—Fe

2n(1+4xc) logh ( + ACb) ; ¢11(Z)7 S Sc

00(2) + wa0(z) + (1 +1151) 3

=1

& I — Y N
zi;fhfihb IOg + Z CU,,( ) + I]ab1 z:l ¢n+1 (é> +* (az3 : )Aabl zzl w:1+1 (é)

=

o) =] +LCLrerA [ B= z C, + Gt E cn} , ZES), (87b)

Kkl jog2 4 BOF Jo0b 4 (1 4 [T,) 3" w,(z) + (14 M) Z=2 S ¢ (z)

2n(1+10) nGp(14-kKp) ] 1
n= n=

(1+ch) ?% ZGSC

HNgE:
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The recurrence formulae for ¢,(z) and w,(z) are

Gy (2) =

Wpy1 (Z) =

with

Cn+] =

where

(14 4)83), n=0
2012 o)
My (52) + B o (1) — 5 #5500 ()

2b2

—a? ( )]—i—Hab(Z—;—l)(C,,—cha,)z, n=1,23...
(1+ M) y(z) + (1 + M) Con S, n=0

2

Aab [chwn ( ) + ch bzl;Zaz % (l’)n (az ) + HCbC j|

(14+44) (TpyCu+C) oAy _
+ - t+C%, n=1,2,3

Hep (1414, F

Tt oy TTen (67720 = Ka€7%0) + (725 — Kue™729)]
cl

My ey F —al) _ —iy iy =iy
+2“(1+Ka)b2(17[m+1)(1—173b) [Tpa(Zoe"” — Kazoe™) + (20¢ KqZoe")]
Toalley i Zell Fal? iy _
¥ BT (D D175 [[T5a(208 KaZoe”) + (2067 — K,z0€™7)], for n=0
2, 2 [(Agy+H30)Cot 2+ Agy—1,)C 1 2 [ (Agp+p0) Ct- (24 Ay =113, )Cp
ch_ a- ab ba)bn ab ba)bn ch__ a” ab ba)bn ab ba)bn _
(1-1%) ¥ [ 11T, Tz v - , forn=1,2,3

_ (d?
Ga0(2) = M0 <z> + I1,,C 0z

- a2 a2
Wa0(2) = Apahyy (;) + Coo =

*

0(2) =

i) =5 (- D) L Rl o ()
027271(1—&—;@,) 0T (z—z0) 2n(l4+x,) B\

_ 7Fciy ) log (a - ?)

2n(1 4+ x,
1, F L . . o
Ca: eU_ a e” +Ha ely_ a ell
0 2n(1 + K,)a*(1 — IT3,) (@ KaZo ™) palZo KaZ0e")]
Fe?
$o(2) = —m log(z — z)
oo(z) = Fel? & 1 N K Fe log( )
k) \ T 2 ) mz)  2n(lh ) BET

For a special case when material » and ¢ are the same, Eq. (87) reduces to

b(z) =

_Fe My [ (z=2)e " iy &
27r(l+ha log( ) + 2n(1+x,) |: a’/z—% + K" lOg (a )
112 F [ (pa—1ca)z0¢ 7+ (1~ pq1ca)Z0€" |

2n(14k4)(1— H;ﬂ)

+ %, z€Sy

a

_Fel? z (I 4p) Fel? _az
2n(1+xkp) lo g 2n(14-k,) log (a z )7 z€ SC
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211(111)6,) |:<ZT) - é) (zizo) + Kaeiih/ IOg(Z - ZO) - Ab“eiiy IOg (a B ZTT)Z)}

My F[(1=Mpgrca)e 720+ (Mpe—ra)eZ5) 1
+ 2n(1+rg) (1-112,) o ZES

w(z) = , e N (89D)
KkpFe " z +11p, —_— 17 —iy az
3T 1085 + Sai KZO - a?) Gy T Kae 7 log (a - 70)}

My (141 ) F[(1=Mpgica)e ™72+ (Mpg—1ca)eZg] 1

+ 2n(14wq) (1-112, ) o ZES

which is exactly the same as the expression in Eq. (84) if one replaces 11, Apq, Ka, Kp, @ 1n Eq. (89) with 11,
Ay, Kpy Ky b, TESpEctively.

4. Results and discussion

The stress functions as indicated in Eqgs. (45) and (82) are expressed in terms of ¢,(z) and w,(z)
(n=20,1,2...), which may be calculated from a homogeneous solution ¢¢(z) and w(z) by the recurrence
formulae Egs. (46) and (83). The rate of convergence depends on the ratios |¢,+1(z)|/|¢.(z)] and
|w,41(2)|/|,(2)|, which in turn depend on the non-dimensional bimaterial constants A, and I1,, (or A
and I1.,). For most combinations of materials, A and IT are less than 1 and 0.5, respectively, which guar-
antee rapid convergence. Consequently, the convergence rate becomes more rapid as the differences of the
elastic constants of the neighboring materials get smaller.

Figs. 2 and 3 respectively show the interfacial normal and shear stress between material » and ¢ for a
point force located at S.. It is seen that the maximum interfacial normal stress increases as a point force
is applied closer to the interface as shown in Fig. 2. The interfacial shear stress vanishes at 6 = 90° and
0 = 270° due to loading symmetry as shown in Fig. 3. Similar trend can also be found for the case of a point
force embedded in S, as shown in Figs. 4 and 5 except that the maximum interfacial normal stress becomes
compressive for the present case. When material ¢ is non-existent, the present trimaterial problem is

b/F

\ \ \ \ \
0 60 120 180 240 300 360
6 (degrees)

Fig. 2. Angular variations of interfacial normal stress between material » and ¢ for a point force located in S, (G./G, = G./G, = 1/2,
Va=vy=v.=0.3, bla=2, 6,=90°, y =90°).
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\ \ \
0 60 120 180 240 300 360

6 (degrees)

Fig. 3. Angular variations of interfacial shear stress between material b and ¢ for a point force located in S. (G,/G, = G./G,=1/2,
Ve =V, =v.=0.3, bla=2, 0, =90°, 7y =90°).

m

o_blv

N
0 60 120 180 240 300 360
0 (degrees)

Fig. 4. Angular variations of interfacial normal stress between material b and ¢ for a point force located in S, (G,/G, = G./G, = 1/2,

Ve =V, =v.=0.3, bla=2, 0y =90°7 = 90°).

degenerated to the thin-layer hole problem whose solution can be obtained by putting A, = I1,, = —1 in
Eq. (45) or Eq. (82). The distribution of the interfacial stresses for a thin-layer hole structure with a point
force embedded in S, is shown in Figs. 6 and 7. It is seen that the trend for the present case is nearly the
same as that of the trimaterial one, but the magnitude of interfacial stresses for a thin-layer hole structure is
less than that of a trimaterial. This is simply because that the interfacial stresses can be further intensified
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60 120

T
180 240
0 (degrees)

\
300

o
360

Fig. 5. Angular variations of interfacial shear stress between material » and ¢ for a point force located in S, (G./G, = G./G, = 1/2,

Va=vy=v.=0.3, bla=2, 0, = 90°,7 =90°).

c,b/F

60 120

180 240

6 (degrees)

300

o
360

Fig. 6. Angular variations of interfacial normal stress for a thin-layer hole structure for a point force located in S, (G,./G, = G./G, = 1/2,

Vo= vy = v = 0.3, bla =2, 0y = 90°,y = 90°).

(or diminished) by the adjacent material having a higher (or lower) stiffness. Note that all the calculated
results shown in Figs. 2-7 are determined by the sum up to n =4 of Eq. Egs. (45) and (82), since they are
checked to achieve a very good convergence of the series form solutions. It is found that the contributions
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-0.4 I I 1
0 60 120 180 240 300 360

6 (degrees)

Fig. 7. Angular variations of interfacial shear stress for a thin-layer hole structure for a point force located in S, (G./G, = G./Gy = 1/2,
Ve=V,=v.=0.3, bla=2, 0y =90°7 = 90°).

of terms with n=1,2,3 and 4 to the normal and shear stresses o,,b/F and ¢,¢b/F for the case ro/b =2 in
Figs. 2 and 3 are approximately 36.25%, 8.06%, 2.01% and 0.48% respectively. It is likely that the error
of approximations with terms up to n =4 is less than 0.5%.

5. Conclusion

An alternative efficient procedure is established to analyze plane elasticity problems of a three-phase cir-
cularly cylindrical layered media subject to an arbitrary point force. Within the framework of the procedure
of analytical continuation and the method of successive approximations, the solution associated with the
heterogeneous problem is sought as transformation on the solution to the corresponding homogeneous
problem. It should be emphasized that the method of the present approach can be also extended to solve
the problem consisting of any number of layered medium. The convergence rate of the series solution
depends on the material combinations in such a way that the convergence rate becomes more rapid if
the differences of elastic constants of adjacent materials get smaller.
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